HomeCarbon NewsUS Steelmaker Applies Surcharges for Lower Carbon Emissions, Eyes Hydrogen for More...

US Steelmaker Applies Surcharges for Lower Carbon Emissions, Eyes Hydrogen for More Reductions

Cleveland-Cliffs, a major U.S. iron and steel maker, is putting extra charges on their steel
made from gas-fired hot-briquetted iron. The cool bit? They’re planning to use hydrogen to turn their whole operation green.

HBI is one kind of reduced iron used in making steel and producing it often involves coal used to separate oxygen from iron ore, making the industry carbon-intensive.  

A Cleaner Steel Production

The steel industry is the largest emitting sector responsible for ~7% of all man-made emissions. Most crude steel production heavily relies on blast furnaces that are mostly fueled by coal.

And despite increasing focus on decarbonizing steelmaking, the global steel industry’s emissions/ton have increased steadily over the last years.

World Carbon Emissions of the Iron and Steel Industry

global carbon emissions of iron and steel
Source: Shao, Y. et al. (2022). Environmental Science and Pollution Research.

According to the most recent data available from the International Energy Agency (IEA), 70% of global steel production is using traditional coal-powered blast furnaces. The remaining 30% is made through electric arc furnaces (EAFs), which emit fewer CO2 than blast furnaces.

The industry’s situation in the US is quite the opposite. 70% of steel is produced using EAFs that rely on high-current electric arcs to heat metals.

The North American steel industry pledges to shrink their carbon emissions by using more EAFs and cleaning up power supply. That means replacing coal-powered furnaces with low-carbon alternatives and sourcing power from renewable sources like wind and solar. 

Cleveland-Cliffs is using natural gas to make hot-briquetted iron at its Ohio site. This makes their steel production emit lower carbon emissions compared to the traditional process that uses coal and is why the American steelmaker said that its steel products deserve the surcharge. 

Lourenco Goncalves, Cleveland-Cliffs CEO, said that they’ve recently applied a surcharge they call “Cliffs H” into their clients’ invoices. The additional fee charges customers with a $40/ton applied to every short ton of steel made with HBI. Commenting on the surcharge, Goncalves further noted that:

“We deserve to be paid for a characteristic of our steel that truly differentiates us, particularly when compared to other major suppliers of steel to the automotive industry in the United States.”

Passing along this cost to end consumers would be minimal, increasing the retail price of a car by ~0.1%, the CEO also said. 

Away From Coal to Gas 

Opting for natural gas over coal helps Cleveland-Cliffs to not only slash CO2 emissions but also cut down production costs. With the current price for natural gas, the company was able to produce HBI for less than $200/metric ton

Still, reducing energy emissions won’t make steelmaking a low-carbon process; producers should also decrease the carbon intensity of raw materials. 

Electric arc furnaces, like what Cleveland-Cliffs is using, don’t process raw iron ore. Instead, EAFs process scrap steel, pig iron, and direct reduced iron (DRI). Among these materials, pig iron made with coal emits the most CO2, while DRI made with hydrogen has the lowest emissions. 

Data from S&P Global reveal the greenhouse gas emissions both from iron ore and coal production sites by region. The charts show that emissions from both productions increase from 2020 to 2021 in most regions, highest in North America.  

carbon emissions iron ore steel production by region 2020-2021

carbon emissions steel coal production by region 2020-2021Steel made from DRI and produced in EAFs is viewed as the most technologically mature green steel production today. Using hydrogen instead of natural gas in making DRI is the most carbon-neutral production. 

And as for Cleveland-Cliffs’ CEO, the next avenue in decarbonizing steel production is through hydrogen. 

But according to the IEA, there’s no significant portion of 2021 global steel production done using hydrogen-based DRI via electric arc furnaces. And that just 7% of it opted for DRI powered with either coal or natural gas. 

The biggest barrier to using hydrogen in steelmaking would be the cost. Equivalent units of hydrogen are around 10x more costly than natural gas, says Goncalves. But he added that as this carbon-neutral gas becomes more economical, Cleveland-Cliffs can use it to decarbonize their operations.

Is Green Hydrogen the Future of Steel?

The full adoption of hydrogen in steelmaking depends on the economic availability of the gas itself. 

Hydrogen production remains limited and demand for the most abundant gas in 2021 was at only 94 million metric tons, the IEA reported. But the energy expert estimated that demand for hydrogen will almost double to 180 million metric tons by 2030. 

Recently, a Denver-based startup raised $91 million from Bill Gates and other investors to ramp up its natural hydrogen production in the Midwestern U.S.

Meanwhile, a German multinational company Thyssenkrupp AG got the European Union’s approval for a 2 billion euros, or about $2.3 billion, state subsidies for its proposed green steel production, particularly for its hydrogen-powered DRI plant at Duisburg site.

These recent developments tally with the announced clean hydrogen production capacity globally for 2030 as reported by McKinsey & Company. Companies disclosed 38 metric tons per annum in hydrogen production for the period. 

hydrogen production announced by 2030
Source: McKinsey & Company Hydrogen Insights

In North America alone, companies announced up to 9.3 Mt p.a. of clean hydrogen capacity by 2030, with $46 billion announced investments for 170 projects. 

If these announcements and commitments materialize, green steel production with hydrogen seems to become viable for Cleveland-Cliffs and the industry.

Most Popular
LATEST CARBON NEWS

First the Americans, Now the Canadians: What Banks Are Making an Exodus from NZBA?

The recent exit of Canadian and U.S. banks from the Net-Zero Banking Alliance (NZBA) initiative highlights growing tensions between climate commitments and political pressures....

Trump’s “America First” Energy Agenda: The Critical Points You Must Know

On January 20, 2025, America witnessed another significant event: President Donald Trump's inauguration in Washington, D.C. The ceremony marked the beginning of his four-year...

Can a Rio Tinto-Glencore Merger Supercharge the Race to Net Zero?

The recent merger talks between two mining giants—Glencore and Rio Tinto—signal a major shift in the global market. The merger, though now discontinued, was...

Vistra Fire and Teslas Burning in California: Is it a Wake-Up Call for Battery Storage Safety?

The devastating wildfires in Los Angeles at the start of 2025 reminded the world of nature’s destructive power. And now, the recent fire at...
CARBON INVESTOR EDUCATION

Top 5 Carbon ETFs for Sustainable Investing in 2025

Like stocks, investors can buy and sell Exchange-Traded Funds (ETFs) whenever the market is open. Often investing in carbon credits through ETFs offers a...

Green AI Explained: Fueling Innovation with a Smaller Carbon Footprint

As artificial intelligence (AI) continues to transform industries and unlock new opportunities, its environmental impact is also a matter of concern. While AI holds...

What’s Shaping North America’s Natural Gas in 2024? Insights from Wood Mackenzie

The natural gas market has immensely benefitted this year from robust storage levels and stabilized prices after the sharp spikes of 2022. However, challenges...

EU’s Green Bonds to Slash 55 MTS of CO₂ Annually. Can it Hit Europe’s 2050 Net Zero Target?

The European Commission released its NextGenerationEU (NGEU) Green Bonds Allocation and Impact Report 2024 explaining how proceeds from green bonds are being used to...