HomeCarbon NewsUS Steelmaker Applies Surcharges for Lower Carbon Emissions, Eyes Hydrogen for More...

US Steelmaker Applies Surcharges for Lower Carbon Emissions, Eyes Hydrogen for More Reductions

Cleveland-Cliffs, a major U.S. iron and steel maker, is putting extra charges on their steel
made from gas-fired hot-briquetted iron. The cool bit? They’re planning to use hydrogen to turn their whole operation green.

HBI is one kind of reduced iron used in making steel and producing it often involves coal used to separate oxygen from iron ore, making the industry carbon-intensive.  

A Cleaner Steel Production

The steel industry is the largest emitting sector responsible for ~7% of all man-made emissions. Most crude steel production heavily relies on blast furnaces that are mostly fueled by coal.

And despite increasing focus on decarbonizing steelmaking, the global steel industry’s emissions/ton have increased steadily over the last years.

World Carbon Emissions of the Iron and Steel Industry

global carbon emissions of iron and steel
Source: Shao, Y. et al. (2022). Environmental Science and Pollution Research.

According to the most recent data available from the International Energy Agency (IEA), 70% of global steel production is using traditional coal-powered blast furnaces. The remaining 30% is made through electric arc furnaces (EAFs), which emit fewer CO2 than blast furnaces.

The industry’s situation in the US is quite the opposite. 70% of steel is produced using EAFs that rely on high-current electric arcs to heat metals.

The North American steel industry pledges to shrink their carbon emissions by using more EAFs and cleaning up power supply. That means replacing coal-powered furnaces with low-carbon alternatives and sourcing power from renewable sources like wind and solar. 

Cleveland-Cliffs is using natural gas to make hot-briquetted iron at its Ohio site. This makes their steel production emit lower carbon emissions compared to the traditional process that uses coal and is why the American steelmaker said that its steel products deserve the surcharge. 

Lourenco Goncalves, Cleveland-Cliffs CEO, said that they’ve recently applied a surcharge they call “Cliffs H” into their clients’ invoices. The additional fee charges customers with a $40/ton applied to every short ton of steel made with HBI. Commenting on the surcharge, Goncalves further noted that:

“We deserve to be paid for a characteristic of our steel that truly differentiates us, particularly when compared to other major suppliers of steel to the automotive industry in the United States.”

Passing along this cost to end consumers would be minimal, increasing the retail price of a car by ~0.1%, the CEO also said. 

Away From Coal to Gas 

Opting for natural gas over coal helps Cleveland-Cliffs to not only slash CO2 emissions but also cut down production costs. With the current price for natural gas, the company was able to produce HBI for less than $200/metric ton

Still, reducing energy emissions won’t make steelmaking a low-carbon process; producers should also decrease the carbon intensity of raw materials. 

Electric arc furnaces, like what Cleveland-Cliffs is using, don’t process raw iron ore. Instead, EAFs process scrap steel, pig iron, and direct reduced iron (DRI). Among these materials, pig iron made with coal emits the most CO2, while DRI made with hydrogen has the lowest emissions. 

Data from S&P Global reveal the greenhouse gas emissions both from iron ore and coal production sites by region. The charts show that emissions from both productions increase from 2020 to 2021 in most regions, highest in North America.  

carbon emissions iron ore steel production by region 2020-2021

carbon emissions steel coal production by region 2020-2021 Steel made from DRI and produced in EAFs is viewed as the most technologically mature green steel production today. Using hydrogen instead of natural gas in making DRI is the most carbon-neutral production. 

And as for Cleveland-Cliffs’ CEO, the next avenue in decarbonizing steel production is through hydrogen. 

But according to the IEA, there’s no significant portion of 2021 global steel production done using hydrogen-based DRI via electric arc furnaces. And that just 7% of it opted for DRI powered with either coal or natural gas. 

The biggest barrier to using hydrogen in steelmaking would be the cost. Equivalent units of hydrogen are around 10x more costly than natural gas, says Goncalves. But he added that as this carbon-neutral gas becomes more economical, Cleveland-Cliffs can use it to decarbonize their operations.

Is Green Hydrogen the Future of Steel?

The full adoption of hydrogen in steelmaking depends on the economic availability of the gas itself. 

Hydrogen production remains limited and demand for the most abundant gas in 2021 was at only 94 million metric tons, the IEA reported. But the energy expert estimated that demand for hydrogen will almost double to 180 million metric tons by 2030. 

Recently, a Denver-based startup raised $91 million from Bill Gates and other investors to ramp up its natural hydrogen production in the Midwestern U.S.

Meanwhile, a German multinational company Thyssenkrupp AG got the European Union’s approval for a 2 billion euros, or about $2.3 billion, state subsidies for its proposed green steel production, particularly for its hydrogen-powered DRI plant at Duisburg site.

These recent developments tally with the announced clean hydrogen production capacity globally for 2030 as reported by McKinsey & Company. Companies disclosed 38 metric tons per annum in hydrogen production for the period. 

hydrogen production announced by 2030
Source: McKinsey & Company Hydrogen Insights

In North America alone, companies announced up to 9.3 Mt p.a. of clean hydrogen capacity by 2030, with $46 billion announced investments for 170 projects. 

If these announcements and commitments materialize, green steel production with hydrogen seems to become viable for Cleveland-Cliffs and the industry.

Most Popular

Battery Startups Attract Mega-Investments and American Lithium’s Discovery

Here’s a Key Summary: Battery Boom: Discover how battery startups are securing record-breaking investments, reflecting the burgeoning potential of the sector. A Lithium Gamechanger:...

IEA’s 2023 Net Zero Roadmap: Tripling Renewables and Electrifying the Energy Transition

The International Energy Agency’s (IEA) latest Net Zero Roadmap suggests that tripling renewables capacity to 11,000 GW by 2030 is one way to reach...

Indonesia Launches Carbon Credit Market In A Leap Toward Net Zero

Indonesia launched a carbon credit trading market as part of its goal to reduce carbon emissions and achieve net zero by 2060. Southeast Asia’s largest...

Your Ticket to the Capitol: Hydrogen Americas 2023 Summit & Exhibition

When the U.S. Department of Energy speaks, investors and corporations listen. As the popularity of the Hydrogen sector continues to attract attention in 2023 and...

Carbon Pricing: Understanding The Economics and Trends of Fighting Climate Change

As global temperatures continue to rise, the urgency surrounding climate policies has intensified, thrusting carbon pricing into the limelight of climate discussions. The race to...

The EU Corporate Sustainability Reporting Directive (CSRD): Key Things to Know

Companies operating in the European Union will have to deal with new non-financial and sustainability reporting requirements starting January 2024 with the EU's Corporate...

Who Certifies Carbon Credits?

Anybody can say that they’re offsetting their carbon footprint and get financial support for it, which is good. But here’s another version of the...

An Introduction to Hydrogen Energy

These days, with the importance of furthering the fight against climate change, more and more different options are being explored. Making the transition to...