HomeCarbon NewsMIT Team Finds a Cheaper Way to Capture Carbon from Seawater

MIT Team Finds a Cheaper Way to Capture Carbon from Seawater

MIT researchers developed a way of capturing carbon dioxide from seawater, not air, using less energy and at cheaper cost than direct air capture but with some more environmental benefits. 

The oceans are large carbon sinks, storing huge amounts of CO2. Sucking out that CO2 sounds odd but the MIT team says it’s a good alternative to DAC when it comes to energy use and costs.

The system can also work with ships that would process water as they travel to help mitigate the big contribution of ship traffic to global emissions.

Varanasi, a professor of mechanical engineering, remarked that:

“There are already international mandates to lower shipping’s emissions and this could help shipping companies offset some of their emissions, and turn ships into ocean scrubbers.”

The No.1 Carbon Sink

The most efficient DAC technologies need about 6.6 gigajoules (gJ) of energy, the International Energy Agency says. That’s around 1.83 megawatt-hours/ton of captured CO2. 

Unfortunately, most of that energy is not used to directly separate the CO2 from the air. It’s consumed by the heat energy to keep the absorbers at the right operating temperatures. Or it’s used for the energy needed to compress large amounts of air to the level required for an efficient carbon capture process.

  • Regardless of where the energy goes, the costs of getting a DAC facility to run remain high. Price estimates by the end of the decade per ton of CO2 is at around US$300-$1,000

Currently, there’s no country that is taxing polluters for even just $150. The highest, so far, is Uruguay with $137/ton of CO2

Without lowering the cost of operating DAC, it will be hard to commercialize it. 

Good thing there’s the oceans – the number one carbon sink. They store 50x more CO2 than the atmosphere and 20x more than land plants and soil combined

In a biological process as seen below, when atmospheric carbon concentration rises, CO2 starts to dissolve into seawater. Then marine ecosystems, especially the planktons, do their part in breaking down or changing CO2 into other forms they need to function.

seawater biological carbon pump

The oceans are soaking up between 30% – 40% of all annual carbon emissions by humans. They do that by keeping a constant free exchange with the air. 

Get the carbon out of the seawater and it will suck more out of the air to re-balance the concentrations for marine life to continue thriving. And the best part, the CO2 concentration in seawater is more than 100x greater than in air.

How the MIT Tech will Capture Carbon from Seawater

There have been previous studies and attempts to suck carbon out of the oceans and capture it. But they require the use of chemicals and expensive membranes to do it. 

But the MIT researchers claim that they were able to develop and test a system that’s not using any of those requirements. Their seawater carbon capture tech also uses less energy than air capture methods. 

MIT seawater carbon capture
Left: schematic of the device. Middle: optimizing the current density and electrode gap. Right: cost breakdown of the highly efficient electrochemical cell. Source: MIT

As shown above, the seawater passes through two chambers in the MIT system (left image). 

The first chamber is using reactive electrodes to release protons into the oceans. These protons acidify seawater which turns dissolved inorganic bicarbonates into CO2. The gas then bubbles out and goes to a vacuum. 

The water moves to the second chamber which calls the protons back in, bringing back the acidic water to its previous alkaline state. Then the water goes back into the sea without the CO2 gas. 

In the event that the electrodes run out of protons, the polarity of the voltage is simply reversed. The same reaction happens only with water flowing in the opposite direction due to the reversal. 

The team’s peer-reviewed paper is open access in the journal Energy & Environmental Science. They said that their seawater carbon capture system calls for only 122 kJ/mol of energy. Or that’s equal to only about 0.77 mWh per ton

The MIT researchers think that their method can do better, stating:

“Though our base energy consumption of 122 kJ/mol-CO2 is a record-low… it may still be substantially decreased towards the thermodynamic limit of 32 kJ/mol-CO2.”

Speaking about costs, they estimate an optimal cost of only $56/ton of CO2 captured. But they noted that it should not be compared directly with the costs of running a fully operational DAC.

That figure doesn’t include other possible costs such as vacuum degassing, filtration, and other costs outside the electrochemical system. Still, some of those unaccounted costs can be covered by integrating the seawater carbon capture units with other facilities.

Desalination plants, for instance, are a good example as depicted in the picture. They’re processing high volumes of seawater already.

Other Benefits of the MIT System

Apart from enabling the oceans to draw down more carbon from the air, the MIT CO2 capture method brings other benefits, too. 

Increased carbon concentrations in oceans led to acidification of seawater. This, in turn, threatens the life of shellfish, coral reefs, and other marine beings. 

Plus, the alkaline seawater as the output of the process can help put back the balance in marine ecosystems. 

While this seawater carbon capture tech shows a great potential, there are many things yet to be perfected. The team plans to show a practical project demonstration within the next 2 years. 

Most Popular
LATEST CARBON NEWS

Why Cleantech Funding Slowed Down in 2024—And Where It Still Boomed?

According to the latest Crunchbase report, global investment in sustainability is hitting a four-year low. To be more precise, this was a year of...

LanzaTech and Technip Energies Win $200 Million DOE Funding for Innovative CO2-to-Ethylene Project

LanzaTech Global, Inc. (NASDAQ: LNZA) and Technip Energies, a leading French engineering company focused on clean energy, recently secured funding of $200 million from...

Hanwha Qcells Shines with Record-Breaking Solar Cell Efficiency and $1.45 Billion DOE Loan

Hanwha Qcells, a subsidiary of South Korea's Hanwha Corp has set a world record for tandem solar cell efficiency. The company’s innovative M10-sized cell,...

Li-FT Power Strikes Deal with North Arrow Minerals to Expand Lithium Portfolio in Canada’s Northwest Territories

On December 19, Li-FT Power Ltd. (LIFT) announced that it had signed a definitive agreement with North Arrow Minerals Inc. to acquire three lithium...
CARBON INVESTOR EDUCATION

Green AI Explained: Fueling Innovation with a Smaller Carbon Footprint

As artificial intelligence (AI) continues to transform industries and unlock new opportunities, its environmental impact is also a matter of concern. While AI holds...

What’s Shaping North America’s Natural Gas in 2024? Insights from Wood Mackenzie

The natural gas market has immensely benefitted this year from robust storage levels and stabilized prices after the sharp spikes of 2022. However, challenges...

EU’s Green Bonds to Slash 55 MTS of CO₂ Annually. Can it Hit Europe’s 2050 Net Zero Target?

The European Commission released its NextGenerationEU (NGEU) Green Bonds Allocation and Impact Report 2024 explaining how proceeds from green bonds are being used to...

What is COP29 and Why Is It Hailed as The “Finance COP”?

As climate change worsens, the UN’s 29th annual climate conference, a.k.a. COP29, taking place from November 11 to 22, 2024, in Baku, Azerbaijan, is...