HomeAuto IndustryLithium's Essential Role in EV Battery Chemistry and Global Supply Dynamics

Lithium’s Essential Role in EV Battery Chemistry and Global Supply Dynamics

Lithium is an essential component in lithium-ion batteries which are mainly used in EVs and portable electronic gadgets. Often known as white gold due to its silvery hue, it is extracted from spodumene and brine ores. After mining it is processed into:

  • Lithium carbonate is commonly used in lithium iron phosphate (LFP) batteries for electric vehicles (EVs) and energy storage.
  • Lithium hydroxide, which powers high-performance nickel manganese cobalt oxide (NMC) batteries.

Diversifying Lithium Supply

According to IRENA’s 2024 edition of the Critical Minerals Report, last year global lithium production reached 0.96 million metric tons (Mt) of lithium carbonate equivalent (LCE) which could suffice short- to medium-term demand. But beyond 2030, recycling will play a crucial role in lithium supply, with 0.4 Mt of LCE expected to be available annually by 2035.

Lithium supply and demand in 2023 and 2030

lithium supply

The report says that at present lithium mining is highly concentrated, with over 90% sourced from Australia, Chile, and China. This has also led to global supply chain vulnerabilities.

However, efforts to diversify production are underway, with countries like the Democratic Republic of Congo, Germany, Ghana, and Portugal increasing their investments in lithium exploration. These initiatives could help reduce dependence on a few dominant suppliers and spread mining activities across the globe.

What’s Driving Lithium Demand?

Even though we have reported earlier, the answer remains the same. It is the EV market that’s primarily driving lithium demand. It’s projected to form 82% of total demand by 2030 which is a significant increase from 62% in 2022.

Other applications, such as energy storage systems, electronics, and industrial uses, are expected to contribute between 0.43 and 0.60 Mt of demand annually by 2030.

Meeting this growing demand will require a mining expansion, diversified supply chains, and robust recycling systems to ensure a steady and sustainable lithium supply for the future.

Lithium demand from EV batteries and other applications, 2022 and 203

lithium demand


Li-FT Power: Exploring & Developing Hard Rock Lithium Deposits In Canada

Li-FT Power Ltd. (TSXV: LIFT) recently announced its first-ever National Instrument 43-101 (NI 43-101) compliant mineral resource estimate (MRE) for the Yellowknife Lithium Project (YLP), located in the Northwest Territories, Canada.

An Initial Mineral Resource of 50.4 Million Tonnes at Yellowknife.

This maiden estimate is a major milestone for the company and marks a significant step forward in the project’s development. Li-FT Power’s upcoming mineral resource is expected to further solidify Yellowknife as one of North America’s largest hardrock lithium resources.

Click to learn more about lithium and Li-FT Power Ltd. >>

________________________________________________________________________

EV Battery Production Set to Triple by 2030

  • Lithium-ion battery production is expected to be 3X by 2030, increasing from 2,000 GWh/year in 2023 to 7,300 GWh/year.
  • This growth will meet the EV battery demand of 4,300 GWh/year by 2030 under a 1.5°C climate scenario.

This projected growth includes operational factories, construction projects, and announced plans. However, some projects are still waiting for finalizing investments. These batteries won’t just power EVs; they’ll also support rising demand from energy storage systems and portable electronics.

As EV sales accelerate, the demand for EV batteries is increasing rapidly. Passenger cars and trucks are driving most of this demand due to their high sales volumes and the large battery sizes required for trucks. EV battery demand is expected to exceed 4,300 GWh annually by 2030, representing a five-fold increase compared to 2023.

In addition to EVs, other sectors like battery energy storage systems (BESS) are also increasing battery demand. BESS demand is projected to grow six-fold between 2023 and 2030, but EV batteries will account for nearly ten times more demand by the decade’s end.

What Makes Up an EV Battery?

An EV battery is a pack of battery cells stacked together, comprising the following components:

  • Anode: Typically made of graphite.
  • Cathode: Often composed of lithium metal oxides.
  • Electrolyte: A liquid or solid lithium salt.

These components work together to move lithium ions during charging and discharging. This process enables energy storage and release, powering the vehicle.

Battery system components and internal components of a battery cell

lithium EV battery

EV Battery Chemistries: A Closer Look

The cathode and anode represent most of the critical materials in an EV battery. Cathode types vary and include, Nickel Manganese Cobalt Oxides (NMC), Nickel Cobalt Aluminum Oxides (NCA), Nickel Manganese Cobalt Aluminum Oxide (NMCA), Lithium Iron Phosphate (LFP), and Lithium Manganese Iron Phosphate (LMFP). All these chemistries rely on lithium, but their compositions differ.

Now speaking of EV battery anode, pure graphite is the most widely used material. EV batteries typically use a mix of natural and synthetic graphite. The ratio depends on the cost, performance needs, and battery type.

Copper is another key material in EV anodes. Copper foils act as current collectors, playing a vital role in the battery’s operation.

These variations impact the choice of materials, cost, and environmental footprint and fuel the demand for critical minerals in the EV battery industry.

Estimated average critical material composition of selected EV battery packs

irena ev battery lithum

Asia-Pacific Leads in EV Battery Production

The Asia-Pacific region currently dominates global battery production, holding about 75% of capacity. By 2030, this share is expected to dip slightly to 70%, as other regions ramp up production. Europe is projected to see the fastest growth, with a 10X increase in capacity between 2023 and 2030.

This rapid expansion highlights the global push to support EVs and other technologies, ensuring the world moves closer to a cleaner energy future.

Regional lithium-ion battery manufacturing capacity in 2023 and planned capacity for 2030

IRENA lithium

Source: Data and Visuals from IRENA: Critical materials: Batteries for electric vehicles

Most Popular
LATEST CARBON NEWS

Carbfix and CarbonQuest Unite to Revolutionize Carbon Capture in North America

CarbonQuest, the U.S.-based carbon capture and storage (CCS) provider, and Carbfix, Europe's leading CO2 mineral storage operator have announced a groundbreaking partnership to tackle...

Gone with the Wind: Is This the End for Wind Energy?

For years, wind energy has symbolized the clean energy transition. Towering turbines onshore and offshore have driven significant progress in reducing carbon emissions. However,...

ExxonMobil’s First-of-its-Kind Carbon Capture Solution for U.S. Data Centers

ExxonMobil, a pioneer in carbon capture and storage (CCS) helps U.S. industries, mainly steel, ammonia, and hydrogen reduce their carbon emissions while meeting growing...

UK Renewables Outshine Fossil Fuels in 2024: Wind Gushes Ahead

Renewable energy will take the lead in the UK power mix for the first full year in 2024, according to an analysis by global...
CARBON INVESTOR EDUCATION

Green AI Explained: Fueling Innovation with a Smaller Carbon Footprint

As artificial intelligence (AI) continues to transform industries and unlock new opportunities, its environmental impact is also a matter of concern. While AI holds...

What’s Shaping North America’s Natural Gas in 2024? Insights from Wood Mackenzie

The natural gas market has immensely benefitted this year from robust storage levels and stabilized prices after the sharp spikes of 2022. However, challenges...

EU’s Green Bonds to Slash 55 MTS of CO₂ Annually. Can it Hit Europe’s 2050 Net Zero Target?

The European Commission released its NextGenerationEU (NGEU) Green Bonds Allocation and Impact Report 2024 explaining how proceeds from green bonds are being used to...

What is COP29 and Why Is It Hailed as The “Finance COP”?

As climate change worsens, the UN’s 29th annual climate conference, a.k.a. COP29, taking place from November 11 to 22, 2024, in Baku, Azerbaijan, is...